An activity making various patterns with 2 x 1 rectangular tiles.

This activity investigates how you might make squares and pentominoes from Polydron.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many trapeziums, of various sizes, are hidden in this picture?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Can you fill in the empty boxes in the grid with the right shape and colour?

Can you find all the different triangles on these peg boards, and find their angles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

My coat has three buttons. How many ways can you find to do up all the buttons?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?