The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you find all the different triangles on these peg boards, and find their angles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

An activity making various patterns with 2 x 1 rectangular tiles.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

How many models can you find which obey these rules?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.