Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you find all the different triangles on these peg boards, and find their angles?

How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Here are some rods that are different colours. How could I make a yellow rod using white and red rods?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.