Imagine a room full of people who keep flipping coins until they get a tail. Will anyone get six heads in a row?

Can you work out which spinners were used to generate the frequency charts?

Can you work out the probability of winning the Mathsland National Lottery? Try our simulator to test out your ideas.

If everyone in your class picked a number from 1 to 225, do you think any two people would pick the same number?

In this follow-up to the problem Odds and Evens, we invite you to analyse a probability situation in order to find the general solution for a fair game.

Alison and Charlie are playing a game. Charlie wants to go first so Alison lets him. Was that such a good idea?

Seven balls are shaken. You win if the two blue balls end up touching. What is the probability of winning?

Six balls are shaken. You win if at least one red ball ends in a corner. What is the probability of winning?

You'll need to know your number properties to win a game of Statement Snap...

Where should you start, if you want to finish back where you started?

There are lots of different methods to find out what the shapes are worth - how many can you find?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

There are nasty versions of this dice game but we'll start with the nice ones...

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

If you move the tiles around, can you make squares with different coloured edges?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Which countries have the most naturally athletic populations?

How well can you estimate 10 seconds? Investigate with our timing tool.

Can you find any two-digit numbers that satisfy all of these statements?

Play around with sets of five numbers and see what you can discover about different types of average...

Can you recreate squares and rhombuses if you are only given a side or a diagonal?

Use your skill and judgement to match the sets of random data.

Here is a machine with four coloured lights. Can you make two lights switch on at once? Three lights? All four lights?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Who said that adding, subtracting, multiplying and dividing couldn't be fun?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you find the values at the vertices when you know the values on the edges?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Can you find a way to identify times tables after they have been shifted up or down?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Which set of numbers that add to 10 have the largest product?

Imagine you were given the chance to win some money... and imagine you had nothing to lose...

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?