How efficiently can various flat shapes be fitted together?

What 3D shapes occur in nature. How efficiently can you pack these shapes together?

The net of a cube is to be cut from a sheet of card 100 cm square. What is the maximum volume cube that can be made from a single piece of card?

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

Can you find the link between these beautiful circle patterns and Farey Sequences?

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

For any right-angled triangle find the radii of the three escribed circles touching the sides of the triangle externally.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

In this problem we see how many pieces we can cut a cube of cheese into using a limited number of slices. How many pieces will you be able to make?

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Takes you through the systematic way in which you can begin to solve a mixed up Cubic Net. How close will you come to a solution?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

A circular plate rolls inside a rectangular tray making five circuits and rotating about its centre seven times. Find the dimensions of the tray.

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

A triangle PQR, right angled at P, slides on a horizontal floor with Q and R in contact with perpendicular walls. What is the locus of P?

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

Some treasure has been hidden in a three-dimensional grid! Can you work out a strategy to find it as efficiently as possible?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Can you find a rule which connects consecutive triangular numbers?

Can you find a rule which relates triangular numbers to square numbers?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

See if you can anticipate successive 'generations' of the two animals shown here.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.