Some diagrammatic 'proofs' of algebraic identities and inequalities.
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
Can you find a rule which connects consecutive triangular numbers?
Mark a point P inside a closed curve. Is it always possible to find two points that lie on the curve, such that P is the mid point of the line joining these two points?
Can you find a rule which relates triangular numbers to square numbers?
Show that all pentagonal numbers are one third of a triangular number.
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?
Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.
To avoid losing think of another very well known game where the patterns of play are similar.
Can you make a tetrahedron whose faces all have the same perimeter?
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
How can visual patterns be used to prove sums of series?
How many winning lines can you make in a three-dimensional version of noughts and crosses?
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.
We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.
Use the diagram to investigate the classical Pythagorean means.
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?
Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .
In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?
What's the largest volume of box you can make from a square of paper?
A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .
Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?
A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .
Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?
There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .
Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .
Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?
Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.
This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!
This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .
In how many different ways can I colour the five edges of a pentagon red, blue and green so that no two adjacent edges are the same colour?
A game for 2 people. Take turns joining two dots, until your opponent is unable to move.
Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.
I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?
Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.
What can you see? What do you notice? What questions can you ask?
Can you find the link between these beautiful circle patterns and Farey Sequences?
Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?