Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?
A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?
To avoid losing think of another very well known game where the patterns of play are similar.
Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?
How many different symmetrical shapes can you make by shading triangles or squares?
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?
Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?
Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?
Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?
How many moves does it take to swap over some red and blue frogs? Do you have a method?
Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .
Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?
Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .
Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.
Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.
Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?
These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?
In how many different ways can I colour the five edges of a pentagon red, blue and green so that no two adjacent edges are the same colour?
The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?
ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.
Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?
Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .
Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube so that the surface area of the remaining solid is the same as the surface area of the original?
What can you see? What do you notice? What questions can you ask?
Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?
Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?
Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.
In how many ways can you fit all three pieces together to make shapes with line symmetry?
What 3D shapes occur in nature. How efficiently can you pack these shapes together?
Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?
What's the largest volume of box you can make from a square of paper?
Explore the area of families of parallelograms and triangles. Can you find rules to work out the areas?