Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Can you make a tetrahedron whose faces all have the same perimeter?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for two players based on a game from the Somali people of Africa. The first player to pick all the other's 'pumpkins' is the winner.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

A huge wheel is rolling past your window. What do you see?

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

An ancient game for two from Egypt. You'll need twelve distinctive 'stones' each to play. You could chalk out the board on the ground - do ask permission first.

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This game for two, was played in ancient Egypt as far back as 1400 BC. The game was taken by the Moors to Spain, where it is mentioned in 13th century manuscripts, and the Spanish name Alquerque. . . .

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

When dice land edge-up, we usually roll again. But what if we didn't...?

What is the shape of wrapping paper that you would need to completely wrap this model?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Can you find a way of representing these arrangements of balls?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?