Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Some treasure has been hidden in a three-dimensional grid! Can you work out a strategy to find it as efficiently as possible?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

A game for two players based on a game from the Somali people of Africa. The first player to pick all the other's 'pumpkins' is the winner.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Can you make a tetrahedron whose faces all have the same perimeter?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

An ancient game for two from Egypt. You'll need twelve distinctive 'stones' each to play. You could chalk out the board on the ground - do ask permission first.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

To avoid losing think of another very well known game where the patterns of play are similar.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

This game for two, was played in ancient Egypt as far back as 1400 BC. The game was taken by the Moors to Spain, where it is mentioned in 13th century manuscripts, and the Spanish name Alquerque. . . .

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What is the shape of wrapping paper that you would need to completely wrap this model?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

How many different symmetrical shapes can you make by shading triangles or squares?