Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

This game for two, was played in ancient Egypt as far back as 1400 BC. The game was taken by the Moors to Spain, where it is mentioned in 13th century manuscripts, and the Spanish name Alquerque. . . .

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A game for two players based on a game from the Somali people of Africa. The first player to pick all the other's 'pumpkins' is the winner.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

An ancient game for two from Egypt. You'll need twelve distinctive 'stones' each to play. You could chalk out the board on the ground - do ask permission first.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

A huge wheel is rolling past your window. What do you see?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Some treasure has been hidden in a three-dimensional grid! Can you work out a strategy to find it as efficiently as possible?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

In how many different ways can I colour the five edges of a pentagon red, blue and green so that no two adjacent edges are the same colour?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

How many different symmetrical shapes can you make by shading triangles or squares?