A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you cut up a square in the way shown and make the pieces into a triangle?

How many different symmetrical shapes can you make by shading triangles or squares?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you find ways of joining cubes together so that 28 faces are visible?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What is the greatest number of squares you can make by overlapping three squares?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make a flower design using the same shape made out of different sizes of paper.

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Make a cube out of straws and have a go at this practical challenge.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

Reasoning about the number of matches needed to build squares that share their sides.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you visualise what shape this piece of paper will make when it is folded?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.