This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .
This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?
Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?
A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?
If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?
10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?
Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?
Design an arrangement of display boards in the school hall which fits the requirements of different people.
Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.
Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.
Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?
In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?
What is the best way to shunt these carriages so that each train can continue its journey?
Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?
Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?
This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .
When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.
Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?
A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?
A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?
In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.
Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?
Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?
How will you go about finding all the jigsaw pieces that have one peg and one hole?
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?
How many different triangles can you make on a circular pegboard that has nine pegs?
Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?
How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?
An ancient game for two from Egypt. You'll need twelve distinctive 'stones' each to play. You could chalk out the board on the ground - do ask permission first.
Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?
Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.
Can you make a 3x3 cube with these shapes made from small cubes?
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
Can you fit the tangram pieces into the outline of Mah Ling?
How many moves does it take to swap over some red and blue frogs? Do you have a method?
These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?
Can you fit the tangram pieces into the outline of the house?
On which of these shapes can you trace a path along all of its edges, without going over any edge twice?
This article looks at levels of geometric thinking and the types of activities required to develop this thinking.
A shape and space game for 2, 3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board.
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
Which of these dice are right-handed and which are left-handed?
A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?