Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you visualise what shape this piece of paper will make when it is folded?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Make a flower design using the same shape made out of different sizes of paper.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the greatest number of squares you can make by overlapping three squares?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Mah Ling?

What shape is made when you fold using this crease pattern? Can you make a ring design?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outlines of the convex shapes?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Reasoning about the number of matches needed to build squares that share their sides.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.