How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Make a cube out of straws and have a go at this practical challenge.

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you find ways of joining cubes together so that 28 faces are visible?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Exploring and predicting folding, cutting and punching holes and making spirals.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

What is the greatest number of squares you can make by overlapping three squares?

Can you visualise what shape this piece of paper will make when it is folded?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 x 2 cube that is green all over AND a 2 x 2 x 2 cube that is yellow all over?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

How many different triangles can you make on a circular pegboard that has nine pegs?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.