Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you fit the tangram pieces into the outline of the butterfly?

Can you fit the tangram pieces into the outline of this teacup?

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the convex shapes?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outline of the telephone?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of the candle?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of the sports car?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you logically construct these silhouettes using the tangram pieces?

Have a look at these photos of different fruit. How many do you see? How did you count?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Can you fit the tangram pieces into the outlines of the numbers?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Ming?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

Can you fit the tangram pieces into the outline of the house?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.