How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

How many different symmetrical shapes can you make by shading triangles or squares?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you find ways of joining cubes together so that 28 faces are visible?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game for two players based on a game from the Somali people of Africa. The first player to pick all the other's 'pumpkins' is the winner.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

What is the greatest number of squares you can make by overlapping three squares?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you find a way of counting the spheres in these arrangements?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.