Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

You want to make each of the 5 Platonic solids and colour the faces so that, in every case, no two faces which meet along an edge have the same colour.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Exploring and predicting folding, cutting and punching holes and making spirals.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outlines of the convex shapes?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of the butterfly?

Which of the following cubes can be made from these nets?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 x 2 cube that is green all over AND a 2 x 2 x 2 cube that is yellow all over?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of this teacup?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outline of the candle?

Can you logically construct these silhouettes using the tangram pieces?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Can you fit the tangram pieces into the outlines of the numbers?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Ming?

Explore our selection of interactive tangrams. Can you use the tangram pieces to re-create each picture?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

Can you fit the tangram pieces into the outline of the sports car?