Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of this teacup?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Can you find a way of counting the spheres in these arrangements?

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the convex shapes?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An activity centred around observations of dots and how we visualise number arrangement patterns.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of the butterfly?

Can you fit the tangram pieces into the outline of the telephone?

Can you fit the tangram pieces into the outline of the candle?

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you logically construct these silhouettes using the tangram pieces?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Have a look at these photos of different fruit. How many do you see? How did you count?

Watch this animation. What do you see? Can you explain why this happens?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Can you fit the tangram pieces into the outlines of the numbers?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.