Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many different triangles can you make on a circular pegboard that has nine pegs?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Can you find ways of joining cubes together so that 28 faces are visible?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Exploring and predicting folding, cutting and punching holes and making spirals.

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Make a cube out of straws and have a go at this practical challenge.

Reasoning about the number of matches needed to build squares that share their sides.

Can you cut up a square in the way shown and make the pieces into a triangle?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you find a way of counting the spheres in these arrangements?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Make a flower design using the same shape made out of different sizes of paper.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.