You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you find ways of joining cubes together so that 28 faces are visible?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

How many different triangles can you make on a circular pegboard that has nine pegs?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

What is the greatest number of squares you can make by overlapping three squares?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?