Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many different triangles can you make on a circular pegboard that has nine pegs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Can you find a way of counting the spheres in these arrangements?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outlines of the convex shapes?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Which of these dice are right-handed and which are left-handed?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you fit the tangram pieces into the outline of the dragon?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Watch this animation. What do you see? Can you explain why this happens?

Can you logically construct these silhouettes using the tangram pieces?