Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outlines of the convex shapes?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Make one big triangle so the numbers that touch on the small triangles add to 10.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Here are shadows of some 3D shapes. What shapes could have made them?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What happens when you try and fit the triomino pieces into these two grids?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you fit the tangram pieces into the outlines of the numbers?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?