How many pieces of string have been used in these patterns? Can you describe how you know?

How many loops of string have been used to make these patterns?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the convex shapes?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outline of the butterfly?

Here are shadows of some 3D shapes. What shapes could have made them?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this teacup?

Can you fit the tangram pieces into the outline of the telephone?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outline of the candle?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outlines of the numbers?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the telescope and microscope?