Challenge Level

Create a pattern on the small grid. How could you extend your pattern on the larger grid?

Challenge Level

A shape and space game for 2, 3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board.

Challenge Level

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Challenge Level

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Challenge Level

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Challenge Level

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

Challenge Level

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Challenge Level

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Challenge Level

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Challenge Level

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Challenge Level

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Challenge Level

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Challenge Level

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Challenge Level

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Challenge Level

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Challenge Level

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Challenge Level

Make one big triangle so the numbers that touch on the small triangles add to 10.

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

Challenge Level

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Challenge Level

What can you see? What do you notice? What questions can you ask?

Challenge Level

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Challenge Level

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Challenge Level

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Challenge Level

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Challenge Level

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Challenge Level

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Challenge Level

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Challenge Level

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Challenge Level

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Challenge Level

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Challenge Level

Can you fit the tangram pieces into the outlines of the convex shapes?

Challenge Level

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Challenge Level

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Challenge Level

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

Challenge Level

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Challenge Level

Can you find a way of counting the spheres in these arrangements?

Challenge Level

What shape is made when you fold using this crease pattern? Can you make a ring design?

Challenge Level

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Challenge Level

Make a flower design using the same shape made out of different sizes of paper.

Challenge Level

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Challenge Level

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Challenge Level

Can you visualise what shape this piece of paper will make when it is folded?