A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What happens when you try and fit the triomino pieces into these two grids?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many different triangles can you make on a circular pegboard that has nine pegs?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Make one big triangle so the numbers that touch on the small triangles add to 10.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 x 2 cube that is green all over AND a 2 x 2 x 2 cube that is yellow all over?

What is the greatest number of squares you can make by overlapping three squares?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you split each of the shapes below in half so that the two parts are exactly the same?

Move just three of the circles so that the triangle faces in the opposite direction.

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?