Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you fit the tangram pieces into the outlines of the convex shapes?

Can you fit the tangram pieces into the outline of this teacup?

Can you fit the tangram pieces into the outline of the sports car?

Can you fit the tangram pieces into the outline of the telephone?

Can you fit the tangram pieces into the outline of the candle?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of the butterfly?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you fit the tangram pieces into the outline of Mah Ling?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you try and fit the triomino pieces into these two grids?

Can you fit the tangram pieces into the outline of the house?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outline of the brazier for roasting chestnuts?

Can you logically construct these silhouettes using the tangram pieces?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Can you fit the tangram pieces into the outlines of the numbers?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?