Here are shadows of some 3D shapes. What shapes could have made them?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outline of the house?

Can you fit the tangram pieces into the outline of the butterfly?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

Can you fit the tangram pieces into the outline of the sports car?

Can you fit the tangram pieces into the outline of the telephone?

Can you fit the tangram pieces into the outline of the candle?

Can you fit the tangram pieces into the outline of this teacup?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you fit the tangram pieces into the outline of Little Ming?

You want to make each of the 5 Platonic solids and colour the faces so that, in every case, no two faces which meet along an edge have the same colour.

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the numbers?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you fit the tangram pieces into the outline of the brazier for roasting chestnuts?

Can you logically construct these silhouettes using the tangram pieces?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Can you fit the tangram pieces into the outlines of the convex shapes?

Make a cube out of straws and have a go at this practical challenge.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Exploring and predicting folding, cutting and punching holes and making spirals.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?