In this short problem, try to find the location of the roots of some unusual functions by finding where they change sign.

How would you go about estimating populations of dolphins?

Explore the shape of a square after it is transformed by the action of a matrix.

Which of these infinitely deep vessels will eventually full up?

Can you make matrices which will fix one lucky vector and crush another to zero?

Starting with two basic vector steps, which destinations can you reach on a vector walk?

Use vectors and matrices to explore the symmetries of crystals.

Can you match the charts of these functions to the charts of their integrals?

How do you choose your planting levels to minimise the total loss at harvest time?

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Explore the meaning of the scalar and vector cross products and see how the two are related.

Go on a vector walk and determine which points on the walk are closest to the origin.

Explore the properties of matrix transformations with these 10 stimulating questions.

Explore the meaning behind the algebra and geometry of matrices with these 10 individual problems.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

This problem explores the biology behind Rudolph's glowing red nose.

Analyse these beautiful biological images and attempt to rank them in size order.

Match the descriptions of physical processes to these differential equations.

Looking at small values of functions. Motivating the existence of the Taylor expansion.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Invent scenarios which would give rise to these probability density functions.

Can you sketch these difficult curves, which have uses in mathematical modelling?

Build up the concept of the Taylor series

Shows that Pythagoras for Spherical Triangles reduces to Pythagoras's Theorem in the plane when the triangles are small relative to the radius of the sphere.

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Was it possible that this dangerous driving penalty was issued in error?

Get further into power series using the fascinating Bessel's equation.

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Look at the advanced way of viewing sin and cos through their power series.

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Formulate and investigate a simple mathematical model for the design of a table mat.

Can you work out which processes are represented by the graphs?

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Explore the relationship between resistance and temperature

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

Here are several equations from real life. Can you work out which measurements are possible from each equation?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.