Starting with two basic vector steps, which destinations can you reach on a vector walk?

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

Analyse these beautiful biological images and attempt to rank them in size order.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

How would you go about estimating populations of dolphins?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Is it really greener to go on the bus, or to buy local?

What shape would fit your pens and pencils best? How can you make it?

Simple models which help us to investigate how epidemics grow and die out.

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Formulate and investigate a simple mathematical model for the design of a table mat.

Can you sketch graphs to show how the height of water changes in different containers as they are filled?

Can you work out which processes are represented by the graphs?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Can you draw the height-time chart as this complicated vessel fills with water?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Is there a temperature at which Celsius and Fahrenheit readings are the same?

Can you deduce which Olympic athletics events are represented by the graphs?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Where should runners start the 200m race so that they have all run the same distance by the finish?

If I don't have the size of cake tin specified in my recipe, will the size I do have be OK?

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

How would you design the tiering of seats in a stadium so that all spectators have a good view?

Two trains set off at the same time from each end of a single straight railway line. A very fast bee starts off in front of the first train and flies continuously back and forth between the. . . .

Which dilutions can you make using only 10ml pipettes?

Have you ever wondered what it would be like to race against Usain Bolt?

Explore the relationship between resistance and temperature

These Olympic quantities have been jumbled up! Can you put them back together again?

Use your skill and judgement to match the sets of random data.

When you change the units, do the numbers get bigger or smaller?

Which units would you choose best to fit these situations?

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?