What is an AC voltage? How much power does an AC power source supply?

Look at the calculus behind the simple act of a car going over a step.

Look at the units in the expression for the energy levels of the electrons in a hydrogen atom according to the Bohr model.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

An article about the kind of maths a first year undergraduate in physics, engineering and other physical sciences courses might encounter. The aim is to highlight the link between particular maths. . . .

This is the area of the advanced stemNRICH site devoted to the core applied mathematics underlying the sciences.

See how the motion of the simple pendulum is not-so-simple after all.

Problems which make you think about the kinetic ideas underlying the ideal gas laws.

Explore the Lorentz force law for charges moving in different ways.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

A look at a fluid mechanics technique called the Steady Flow Momentum Equation.

An introduction to a useful tool to check the validity of an equation.

Can you match up the entries from this table of units?

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

Which line graph, equations and physical processes go together?

Explore the rates of growth of the sorts of simple polynomials often used in mathematical modelling.

How does the half-life of a drug affect the build up of medication in the body over time?

How high will a ball taking a million seconds to fall travel?

Can you work out the natural time scale for the universe?

Follow in the steps of Newton and find the path that the earth follows around the sun.

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Where will the spaceman go when he falls through these strange planetary systems?

Work in groups to try to create the best approximations to these physical quantities.

Dip your toe into the world of quantum mechanics by looking at the Schrodinger equation for hydrogen atoms

Show that even a very powerful spaceship would eventually run out of overtaking power

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Explore the power of aeroplanes, spaceships and horses.

Things are roughened up and friction is now added to the approximate simple pendulum

Explore the energy of this incredibly energetic particle which struck Earth on October 15th 1991

A look at different crystal lattice structures, and how they relate to structural properties

Derive an equation which describes satellite dynamics.

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Some explanations of basic terms and some phenomena discovered by ancient astronomers

A think about the physics of a motorbike riding upside down

Investigate why the Lennard-Jones potential gives a good approximate explanation for the behaviour of atoms at close ranges

Which units would you choose best to fit these situations?

Can you arrange a set of charged particles so that none of them start to move when released from rest?

Investigate the effects of the half-lifes of the isotopes of cobalt on the mass of a mystery lump of the element.

Investigate some of the issues raised by Geiger and Marsden's famous scattering experiment in which they fired alpha particles at a sheet of gold.

When you change the units, do the numbers get bigger or smaller?