Can you arrange a set of charged particles so that none of them start to move when released from rest?

Gravity on the Moon is about 1/6th that on the Earth. A pole-vaulter 2 metres tall can clear a 5 metres pole on the Earth. How high a pole could he clear on the Moon?

A look at different crystal lattice structures, and how they relate to structural properties

Investigate some of the issues raised by Geiger and Marsden's famous scattering experiment in which they fired alpha particles at a sheet of gold.

A think about the physics of a motorbike riding upside down

Investigate why the Lennard-Jones potential gives a good approximate explanation for the behaviour of atoms at close ranges

Problems which make you think about the kinetic ideas underlying the ideal gas laws.

Where will the spaceman go when he falls through these strange planetary systems?

How high will a ball taking a million seconds to fall travel?

Can you work out the natural time scale for the universe?

How fast would you have to throw a ball upwards so that it would never land?

Find out why water is one of the most amazing compounds in the universe and why it is essential for life. - UNDER DEVELOPMENT

Find the equation from which to calculate the resistance of an infinite network of resistances.

This is the technology section of stemNRICH - Core.

Derive an equation which describes satellite dynamics.

Some explanations of basic terms and some phenomena discovered by ancient astronomers

Ever wondered what it would be like to vaporise a diamond? Find out inside...

Explore how can changing the axes for a plot of an equation can lead to different shaped graphs emerging

Explore the Lorentz force law for charges moving in different ways.

Look at the units in the expression for the energy levels of the electrons in a hydrogen atom according to the Bohr model.

Explore the energy of this incredibly energetic particle which struck Earth on October 15th 1991

A look at a fluid mechanics technique called the Steady Flow Momentum Equation.

Explore the power of aeroplanes, spaceships and horses.

What is an AC voltage? How much power does an AC power source supply?

Can you match up the entries from this table of units?

A look at the fluid mechanics questions that are raised by the Stonehenge 'bluestones'.

Show that even a very powerful spaceship would eventually run out of overtaking power

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

A ball whooshes down a slide and hits another ball which flies off the slide horizontally as a projectile. How far does it go?

Have you got the Mach knack? Discover the mathematics behind exceeding the sound barrier.

Follow in the steps of Newton and find the path that the earth follows around the sun.

An introduction to a useful tool to check the validity of an equation.

See how the motion of the simple pendulum is not-so-simple after all.

Investigate the effects of the half-lifes of the isotopes of cobalt on the mass of a mystery lump of the element.

Dip your toe into the world of quantum mechanics by looking at the Schrodinger equation for hydrogen atoms

Get some practice using big and small numbers in chemistry.

Work out the numerical values for these physical quantities.

Which units would you choose best to fit these situations?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Which line graph, equations and physical processes go together?

How does the half-life of a drug affect the build up of medication in the body over time?

Explore the rates of growth of the sorts of simple polynomials often used in mathematical modelling.

Things are roughened up and friction is now added to the approximate simple pendulum

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.