When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Four children were sharing a set of twenty-four butterfly cards. Are there any cards they all want? Are there any that none of them want?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Semaphore is a way to signal the alphabet using two flags. You might want to send a message that contains more than just letters. How many other symbols could you send using this code?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This activity investigates how you might make squares and pentominoes from Polydron.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If you had 36 cubes, what different cuboids could you make?

I start my journey in Rio de Janeiro and visit all the cities as Hamilton described, passing through Canberra before Madrid, and then returning to Rio. What route could I have taken?

Investigate the different ways you could split up these rooms so that you have double the number.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you fill in the empty boxes in the grid with the right shape and colour?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

My coat has three buttons. How many ways can you find to do up all the buttons?

This challenge extends the Plants investigation so now four or more children are involved.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

Find all the numbers that can be made by adding the dots on two dice.

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column

Jack has nine tiles. He put them together to make a square so that two tiles of the same colour were not beside each other. Can you find another way to do it?