A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?
Can you explain the surprising results Jo found when she calculated the difference between square numbers?
Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.
Which armies can be arranged in hollow square fighting formations?
Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?
The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.