Delight your friends with this cunning trick! Can you explain how it works?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

A game to make and play based on the number line.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Use the tangram pieces to make our pictures, or to design some of your own!

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

How many models can you find which obey these rules?

These practical challenges are all about making a 'tray' and covering it with paper.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

What is the greatest number of squares you can make by overlapping three squares?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you make the birds from the egg tangram?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Make a cube out of straws and have a go at this practical challenge.

Can you cut up a square in the way shown and make the pieces into a triangle?

Exploring and predicting folding, cutting and punching holes and making spirals.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

What shape is made when you fold using this crease pattern? Can you make a ring design?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?