How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many models can you find which obey these rules?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

An activity making various patterns with 2 x 1 rectangular tiles.

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

The challenge for you is to make a string of six (or more!) graded cubes.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This activity investigates how you might make squares and pentominoes from Polydron.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What do these two triangles have in common? How are they related?

These practical challenges are all about making a 'tray' and covering it with paper.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you make the birds from the egg tangram?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.