These practical challenges are all about making a 'tray' and covering it with paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many models can you find which obey these rules?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

What do these two triangles have in common? How are they related?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

This activity investigates how you might make squares and pentominoes from Polydron.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Here is a version of the game 'Happy Families' for you to make and play.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

An activity making various patterns with 2 x 1 rectangular tiles.

Delight your friends with this cunning trick! Can you explain how it works?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you make the birds from the egg tangram?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Exploring and predicting folding, cutting and punching holes and making spirals.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?