If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you make the birds from the egg tangram?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

An activity making various patterns with 2 x 1 rectangular tiles.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

These practical challenges are all about making a 'tray' and covering it with paper.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you split each of the shapes below in half so that the two parts are exactly the same?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How many models can you find which obey these rules?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Make a cube out of straws and have a go at this practical challenge.

Use the tangram pieces to make our pictures, or to design some of your own!

Make a flower design using the same shape made out of different sizes of paper.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

These pictures show squares split into halves. Can you find other ways?