You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

Surprise your friends with this magic square trick.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

How can you make a curve from straight strips of paper?

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Follow these instructions to make a five-pointed snowflake from a square of paper.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

Make a mobius band and investigate its properties.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Can you put these shapes in order of size? Start with the smallest.

What do these two triangles have in common? How are they related?

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

The challenge for you is to make a string of six (or more!) graded cubes.

This challenge invites you to create your own picture using just straight lines. Can you identify shapes with the same number of sides and decorate them in the same way?

This practical activity challenges you to create symmetrical designs by cutting a square into strips.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you lay out the pictures of the drinks in the way described by the clue cards?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a flower design using the same shape made out of different sizes of paper.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

In this activity focusing on capacity, you will need a collection of different jars and bottles.

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

For this activity which explores capacity, you will need to collect some bottles and jars.

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

Can you make a rectangle with just 2 dominoes? What about 3, 4, 5, 6, 7...?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?