Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

What do these two triangles have in common? How are they related?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An investigation that gives you the opportunity to make and justify predictions.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you find ways of joining cubes together so that 28 faces are visible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

I cut this square into two different shapes. What can you say about the relationship between them?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate the different ways you could split up these rooms so that you have double the number.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Why does the tower look a different size in each of these pictures?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?