Challenge Level

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Challenge Level

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Challenge Level

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Challenge Level

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Challenge Level

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Challenge Level

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Challenge Level

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Challenge Level

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Challenge Level

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Challenge Level

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Challenge Level

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Challenge Level

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Challenge Level

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Challenge Level

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Challenge Level

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Challenge Level

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Challenge Level

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Challenge Level

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Challenge Level

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Challenge Level

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Challenge Level

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

Challenge Level

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Challenge Level

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Challenge Level

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Challenge Level

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Challenge Level

In how many ways can you stack these rods, following the rules?

Challenge Level

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Challenge Level

Investigate the different ways you could split up these rooms so that you have double the number.

Challenge Level

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Challenge Level

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Challenge Level

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Challenge Level

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Challenge Level

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Challenge Level

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Challenge Level

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Challenge Level

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Challenge Level

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Challenge Level

Investigate what happens when you add house numbers along a street in different ways.

Challenge Level

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Challenge Level

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Challenge Level

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

Challenge Level

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Challenge Level

An investigation that gives you the opportunity to make and justify predictions.

Challenge Level

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Challenge Level

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Challenge Level

In this investigation, we look at Pascal's Triangle in a slightly different way - rotated and with the top line of ones taken off.

Challenge Level

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Challenge Level

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?