The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

It starts quite simple but great opportunities for number discoveries and patterns!

A challenging activity focusing on finding all possible ways of stacking rods.

In how many ways can you stack these rods, following the rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

An investigation that gives you the opportunity to make and justify predictions.

How many models can you find which obey these rules?

What statements can you make about the car that passes the school gates at 11am on Monday? How will you come up with statements and test your ideas?

What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?