We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the largest cuboid you can wrap in an A3 sheet of paper?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

How many faces can you see when you arrange these three cubes in different ways?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

How many models can you find which obey these rules?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

An activity making various patterns with 2 x 1 rectangular tiles.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What do these two triangles have in common? How are they related?

In how many ways can you stack these rods, following the rules?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?