There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An investigation that gives you the opportunity to make and justify predictions.

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

Investigate what happens when you add house numbers along a street in different ways.

How many different sets of numbers with at least four members can you find in the numbers in this box?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Investigate the different ways you could split up these rooms so that you have double the number.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In how many ways can you stack these rods, following the rules?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

It starts quite simple but great opportunities for number discoveries and patterns!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?