A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

An investigation that gives you the opportunity to make and justify predictions.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Investigate the different ways you could split up these rooms so that you have double the number.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

An activity making various patterns with 2 x 1 rectangular tiles.

What do these two triangles have in common? How are they related?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

How many models can you find which obey these rules?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A follow-up activity to Tiles in the Garden.

A challenging activity focusing on finding all possible ways of stacking rods.

In how many ways can you stack these rods, following the rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

I cut this square into two different shapes. What can you say about the relationship between them?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.