There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Investigate what happens when you add house numbers along a street in different ways.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Investigate the different ways you could split up these rooms so that you have double the number.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

A challenging activity focusing on finding all possible ways of stacking rods.

In how many ways can you stack these rods, following the rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An investigation that gives you the opportunity to make and justify predictions.

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?