What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

Sort the houses in my street into different groups. Can you do it in any other ways?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

These pictures show squares split into halves. Can you find other ways?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Explore the triangles that can be made with seven sticks of the same length.

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you find ways of joining cubes together so that 28 faces are visible?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

I cut this square into two different shapes. What can you say about the relationship between them?

The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What do these two triangles have in common? How are they related?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many models can you find which obey these rules?

This problem is intended to get children to look really hard at something they will see many times in the next few months.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many faces can you see when you arrange these three cubes in different ways?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the largest cuboid you can wrap in an A3 sheet of paper?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?