Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many models can you find which obey these rules?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

What is the largest cuboid you can wrap in an A3 sheet of paper?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Can you find ways of joining cubes together so that 28 faces are visible?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Sort the houses in my street into different groups. Can you do it in any other ways?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

How many faces can you see when you arrange these three cubes in different ways?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A challenging activity focusing on finding all possible ways of stacking rods.

In how many ways can you stack these rods, following the rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A follow-up activity to Tiles in the Garden.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

It starts quite simple but great opportunities for number discoveries and patterns!

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

An activity making various patterns with 2 x 1 rectangular tiles.

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?