### There are 16 results

Broad Topics >

Pythagoras and Trigonometry > Sine rule & cosine rule

##### Age 16 to 18 Challenge Level:

Stick some cubes together to make a cuboid. Find two of the angles
by as many different methods as you can devise.

##### Age 16 to 18

What is the shortest distance through the middle of a dodecahedron between the centres of two opposite faces?

##### Age 14 to 18 Challenge Level:

Find the sides of an equilateral triangle ABC where a trapezium
BCPQ is drawn with BP=CQ=2 , PQ=1 and AP+AQ=sqrt7 . Note: there are
2 possible interpretations.

##### Age 14 to 16 Challenge Level:

Given a square ABCD of sides 10 cm, and using the corners as
centres, construct four quadrants with radius 10 cm each inside the
square. The four arcs intersect at P, Q, R and S. Find the. . . .

##### Age 16 to 18 Challenge Level:

Re-arrange the pieces of the puzzle to form a rectangle and then to
form an equilateral triangle. Calculate the angles and lengths.

##### Age 16 to 18 Challenge Level:

Three semi-circles have a common diameter, each touches the other
two and two lie inside the biggest one. What is the radius of the
circle that touches all three semi-circles?

##### Age 16 to 18 Challenge Level:

In a right-angled tetrahedron prove that the sum of the squares of
the areas of the 3 faces in mutually perpendicular planes equals
the square of the area of the sloping face. A generalisation. . . .

##### Age 14 to 16 Challenge Level:

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

##### Age 14 to 16 Challenge Level:

Explore the geometry of these dart and kite shapes!

##### Age 16 to 18 Challenge Level:

P is a point inside a square ABCD such that PA= 1, PB = 2 and PC =
3. How big is angle APB ?

##### Age 14 to 16 Challenge Level:

Four rods are hinged at their ends to form a convex quadrilateral.
Investigate the different shapes that the quadrilateral can take.
Be patient this problem may be slow to load.

##### Age 16 to 18 Challenge Level:

Four rods are hinged at their ends to form a quadrilateral. How can you maximise its area?

##### Age 14 to 16 Challenge Level:

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

##### Age 14 to 16 Challenge Level:

How far should the roof overhang to shade windows from the mid-day sun?

##### Age 16 to 18 Challenge Level:

Make and prove a conjecture about the cyclic quadrilateral
inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

##### Age 14 to 18 Challenge Level:

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?