Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Can you recreate squares and rhombuses if you are only given a side or a diagonal?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

What is the same and what is different about these circle questions? What connections can you make?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

This article for pupils gives some examples of how circles have featured in people's lives for centuries.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Thinking of circles as polygons with an infinite number of sides - but how does this help us with our understanding of the circumference of circle as pi x d? This challenge investigates. . . .

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

Can you find the areas of the trapezia in this sequence?

Recreating the designs in this challenge requires you to break a problem down into manageable chunks and use the relationships between triangles and hexagons. An exercise in detail and elegance.

Read all about the number pi and the mathematicians who have tried to find out its value as accurately as possible.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

This article gives an wonderful insight into students working on the Arclets problem that first appeared in the Sept 2002 edition of the NRICH website.

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

Two circles are enclosed by a rectangle 12 units by x units. The distance between the centres of the two circles is x/3 units. How big is x?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

M is any point on the line AB. Squares of side length AM and MB are constructed and their circumcircles intersect at P (and M). Prove that the lines AD and BE produced pass through P.

Can you reproduce the design comprising a series of concentric circles? Test your understanding of the realtionship betwwn the circumference and diameter of a circle.

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

The ten arcs forming the edges of the "holly leaf" are all arcs of circles of radius 1 cm. Find the length of the perimeter of the holly leaf and the area of its surface.

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Investigate constructible images which contain rational areas.

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

Explore patterns based on a rhombus. How can you enlarge the pattern - or explode it?

The centre of the larger circle is at the midpoint of one side of an equilateral triangle and the circle touches the other two sides of the triangle. A smaller circle touches the larger circle and. . . .

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

We have four rods of equal lengths hinged at their endpoints to form a rhombus ABCD. Keeping AB fixed we allow CD to take all possible positions in the plane. What is the locus (or path) of the point. . . .

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

In LOGO circles can be described in terms of polygons with an infinite (in this case large number) of sides - investigate this definition further.

By inscribing a circle in a square and then a square in a circle find an approximation to pi. By using a hexagon, can you improve on the approximation?

The challenge is to produce elegant solutions. Elegance here implies simplicity. The focus is on rhombi, in particular those formed by jointing two equilateral triangles along an edge.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?