An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

See how the motion of the simple pendulum is not-so-simple after all.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

At what positions and speeds can the bomb be dropped to destroy the dam?

Work in groups to try to create the best approximations to these physical quantities.

Look at the calculus behind the simple act of a car going over a step.

Third in our series of problems on population dynamics for advanced students.

How do these modelling assumption affect the solutions?

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

First in our series of problems on population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Why MUST these statistical statements probably be at least a little bit wrong?

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Second in our series of problems on population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Sixth in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Formulate and investigate a simple mathematical model for the design of a table mat.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

A brief video explaining the idea of a mathematical knot.

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Simple models which help us to investigate how epidemics grow and die out.

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.